
 19 

 

PHISICS OF URBANISM: THE FRACTAL GROWTH AND DISTRIBUTION 

OF THE ROMANIAN CITIES AND TOWNS 
 

Mircea Gligor
1 

 
1
National College “Roman Voda”, Roman-5550, Neamt, e-mail: mrgligor@yahoo.com

 

 

Abstract. In some previous works (M. Gligor and L. 

Gligor, 2004, 2008) we considered the fractal distribution 

of cities in Romania by population and area of the urban 

perimeter. The dataset was taken according to the 2002 

census, referring to 265 urban settlements. Subsequently, 

there were officially declared an additional 55 towns 

(Wikipedia.org). Today (September, 2011) in Romania 

there are 320 towns. In the present paper, we demonstrate 

that using the updated dataset, the basic features of 

distributions remain essentially the same. In the second 

part of the paper, the Central Places Theory, the diffusion-

limited aggregation and the self-organized criticality 

mechanisms are investigated by means of some numerical 

simulations and the last two are found to fit better the 

urban perimeter growth. 

Keywords: Zipf law, master equation, diffusion-limited 

aggregation, self-organization. 

 

 

1. HISTORICAL FRAMEWORK 

More than seven decades ago, Englewood Cliffs from 

New Jersey published a pioneering book by Christaller 

(1933), where several key questions were for the first time 

posed: “What type of dynamics describe the growing of 

the urban locations?” and, further: “Are there laws which 

determine the number, size and distribution of towns?” 

The Christaller’s theory – the so-called central places 

theory (CPT), later developed by Beckman (1968) among 

others, describes the urban morphology in the terms of the 

Euclidean geometry considering that the urban 

development is structured around a central business 

district. From this he deduced that settlements would tend 

to form in a triangular/hexagonal lattice, this being the 

most efficient pattern for travel between settlements. 

In fact, Christaller’s theory is an important brick in a 

larger theoretical edifice, namely the location theory. 

Before him, Alfred Weber (1909) formulated a least cost 

theory of industrial location which tried to explain and 

predict the location pattern of the industry at a macro-

scale. It emphasized that firms seek a site of minimum 

transport and labor cost, by taking into account several 

economic factors as the point of optimal transportation 

based on the costs of distance to the “material index”, the 

labor distortion, the agglomeration and de-agglomeration.  

A complementary approach of the CPT was formulated 

by August Lösch (1940). While Christaller was starting, in 

effect, with the largest market area and then turned to 

commodities with ever smaller market areas, Lösch 

considered first the commodity with the smallest market 

area and then introduced other commodities with 

successively larger market areas. Thus while Christaller’s 

approach is an inductive one, Lösch’s model is essentially 

a deductive one. In Lösch’s theory the deviations from 

optimal spatial layouts for individual commodities are 

relatively small, and the more flexible distribution of 

functions between centers permits smaller centers to 

provide goods and services to larger centers (that is not 

allowed in Christaller’s approach). 

      Essentially, in order to avoid the inconstancies, both 

Christaller and Lösch theories had to make some basic 

simplifying assumptions such as: 

a) The framework of the model consists of an isotropic 

(all flat), homogeneous, unbounded limitless surface 

(abstract space), an evenly distributed population, and 

evenly distributed resources; 

b) All consumers have a similar purchasing power and 

demand for goods and services; 

c) There is only one type of transport and this would be 

equally easy in all directions; transport cost is proportional 

to distance traveled;  

d) There are no external economies or diseconomies 

permitted, in shopping or in production which could distort 

the systems of hexagons; 

e) No statements about the sizes of central places are 

possible (except, in the case of Christaller, that each higher 

order central place is at least as large as all lower order 

central places); 

f) There can be no Thünen-type ring formation because 

of the need to have an even distribution of demand; 

g) Industrial and service production cannot consume any 

space; otherwise factor prices for land would be different 

in different-size centers. 

All the above assumptions can be hardly considered 

realistic, especially for the urban systems in the developing 

countries. Here the configuration is strongly influenced by 

local factors, such as climate, topography, history of 

development, technological improvement and personal 

preference of consumers and suppliers. Economic status of 

consumers in an area is also crucial in a developing 

country. Consumers of higher economic status tend to be 

more mobile and therefore bypass centers providing only 

lower order goods. On the other hand, the purchasing 

power and density affect the spacing of centers and 

hierarchical arrangements. 

Obviously, the applicability of the CPT is drastically 

limited by two factors the exclusive using of Euclidean 

varieties as lines and surfaces. The modeling of the urban 

perimeter in Euclidean terms leads to results in strong 

discrepancy with the empirical evidence, both for large 

cities and for small towns configurations. That is why 

some modern approaches consider that the random cluster 

models and the fractal properties derived from them 

constitute necessary ingredients in modeling urban 

development.    
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The roots of these approaches are placed in the second 

half of the XX century, when B. Mandelbrot (1975) 

opened the door towards a more realistic description of 

many natural and social phenomena by introducing the 

mathematical varieties with fractional dimensions, usually 

called fractals. In the fractal theories, the dimension has a 

higher degree of generality than in Euclidean it has. For 

instance, considering an object M which can be 

decomposed in N parts, each one in the ratio r (r<1) with 

the whole object, the (self-similarity) dimension is defined 

as:  
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Thus, the dimension associated to the object M may 

appear as a fractional number. 

It is well-known that the distinctive feature of the fractal 

object is self-similarity i.e. it displays the same aspect 

regardless the scale at which it is viewed. This geometrical 

property is mathematically expressed in the scaling of the 

characteristic functions F(x) describing the fractal object: 

F(cx) = c

F(x). The parameter  completely describes the 

object geometric features; this is like saying that a simple 

number is able to characterize a very complicated shape. 

Moreover, the fractal character of the system may be 

reflected not only in its geometric properties, but also in its 

characteristic distribution functions. In this way, numerous 

natural systems display a fractal structure: the mountain 

ranges, river networks, coastlines, etc. The word “fractal” 

here means that some correlation functions show non-

trivial power law behavior. 

In their classical paper on self-organized criticality 

(S.O.C.), Bak, Tang and Wiesenfield (1987) argued that 

the dynamics which give rise to the robust power-law 

correlations seen in the non-equilibrium steady states in 

nature must not involve any fine-tuning of parameters. It 

must be such that the systems under their natural evolution 

are driven to a state at the boundary between the stable and 

unstable states. Such a state then shows long-range 

temporal-temporal fluctuations similar to those in 

equilibrium critical phenomena. Bak et al. (1987) proposed 

a simple example of a system whose natural dynamics 

drives it towards, and then maintains it, at the edge of 

stability: a sand pile. When the average slope of the sand 

pile is larger than a certain value  c, addition of a small 

amount of sand often results in an avalanche whose size is 

of the order of the system size, while in a pile where the 

average slope is  c, the response to addition of sand is less 

predictable. In the steady state of this process the sand may 

be added to the system at a constant small rate, but it 

leaves the system in a very irregular manner, with long 

periods of apparent inactivity interspersed by events which 

may vary in size and which occur at unpredictable 

intervals. A long power law tail characterizes the typical 

distribution of the frequency and size of the avalanches, 

with an eventual cut-off determined by the system size.  

The “random cluster” models (Batty & Xie, 1996) 

consider the cities growth as the growth of two-

dimensional aggregates of particles – problem of particular 

interest in physics of disordered media. In particular, the 

model of diffusion-limited aggregation (DLA) (Witten Jr. 

& Sander, 1981) has been applied to describe urban 

growth, and results in tree-like dendritic structures, which 

have a core or “central business district”. The DLA model 

predicts that there exists only one large fractal cluster that 

is screened from incoming “development units” (people, 

capital, resources, etc). 

The DLA model predicts that the urban population 

density decreases from the centre to the periphery as a 

power law: 
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where r is the radial distance from the core and D is the 

fractal dimension of the model.   

Alternatively, an exponential decay is considered in the 

so-called correlated percolation model (CPM) (Makse, 

Havlin & Stanley, 1995; 1998), where the spatial 

correlations in urban settlements are also embodied. A 

modified version of the DLA model in which the cluster 

density decays as a complementary error function was 

recently elaborated (Pica Ciamarra & Coniglio, 2006). 

Clearly, the CPM offers the best description of the great 

urban agglomerations (e.g. London, Berlin). Nonetheless, 

it is a geographical stylized fact that the small villages, at 

least the ones situated in a plane environment, are roughly 

concentrically structured, so they seem to be better fitted 

by the DLA model. It might be of interest to study what 

happens when the cities are formed by merging some 

independent developed villages. Bucharest, the analyzed 

city in the present paper, is one example.    

On the other hand, the fractal behavior may be found 

not in the spatial structure itself, but is manifested through 

the power-law dependence between some physical 

observables. Examples include the earthquakes, the fluid 

turbulence, etc. Note that a lot of time-series from the 

social sciences, e.g. stock market price variations both for 

the greatest stock markets (Mantegna & Stanley, 2000) 

and for some emerging ones (Gligor, 2004) display power-

law tails in their power spectra (the so-called “1/f noise”).  

In this new meaning of fractality, let us recall that 

almost six decades ago, an important result for the 

urbanism was pointed out: the population and area 

distributions of cities and towns follows power law 

behavior (Zipf, 1949). Indeed, if ns is the number of cities 

having the population s, then: 
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defines the rank of the city in a hierarchy: the largest 

city has R = 1; the second largest R = 2, etc. Zipf found 

that R is a function of s, which can be inverted as:  

 
RRs ~)(                                                                (4) 

 

with    1.      

      The first striking property of the above result 

(known today as “the Zipf’s law for cities” is the scale 

invariance, reflecting an underlying fractal structure; the 
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second consists in universality: the statistical datasets 

shows that the law is valid for many different societies and 

during various time periods. 

The universality of the power law behavior suggests the 

possibility of study the urban system by tools that do not 

depend in an explicit way on the concrete nature of the 

interactions between its elementary constituents. Gabaix 

(1999) suggested that the behavior described by Eq. (4) 

can be explained by assuming an auto-catalytic process 

characterized by the rule that the growth of each individual 

entity is proportional to its present size. Nonetheless, few 

years later, Blank and Solomon (2000) showed that a 

growing system with a fixed number of components and a 

fixed smallest component size cannot converge to a power 

law. Instead, by fixing the minimal population to a certain 

fraction of the average, they defined the so called 

“generalized Lotka-Volterra process” with variable 

number of components, which converges to a power law 

for a very wide range of parameters. Moreover, in a very 

large subset of this range, they obtained for the power law 

exponent the special value 1 specific for the cities 

population distribution. 

The power law distribution is dramatically cut at the 

upper end, i.e. in the region of the small size towns. 

Taking into account this aspect, Malacarne, Mendes and 

Lenzi (2002) suggested the q-exponential distribution 

(derived from the generalized nonextensive statistical 

mechanics) as a possible alternative to the power law. 

However, the cut off can be simply due to some marginal 

effects related to the finiteness of sampling. At present, the 

Zipf’s law is generally accepted as an empirical fact 

describing quite different societies (Mulianta, Situngkir, & 

Surya, 2004; Newman, 2005, and references therein; 

Moura Jr. & Ribeiro, 2006). 

In the following section we show that the Zipf’s law can 

be easily derived by supposing that the development 

process is Markovian. It is well-known that Markovian 

stochastic processes can be described by a master 

equation. In the last decades Weidlich and Haag have 

successfully introduced this formalism for the description 

of social processes (Weidlich & Haag, 1983; Weidlich, 

1991) like opinion formation (Haag, 1989), migration 

(Haag & Weidlich, 1984), agglomeration (Weidlich & 

Haag, 1987) and settlement processes (Weidlich, 1997), 

and have shown how well-known outcomes might well 

arise in a dynamic context.  Particularly important are the 

evolution of the mean value and quasi-mean value 

equations that can depict expected outcomes over time 

(Weidlich, 2002).  These equations operate in a stochastic 

framework, which is supposed to represent the actions of 

the individuals or other lower-level units in the system.  

Following synergetics, trends in order parameters usually 

determine the overall outcomes. 

Some inherent difficulties with the above approaches 

should be noted. One that has been hinted at is the relative 

lack of empirical work related to or based on socio-

dynamics. In general it is not very easy to empirically 

estimate the many of the transition probabilities that are 

crucial to many of the models. On the other hand, the 

above approaches seem to leave out the possibility that the 

trends of the order parameters themselves may be altered 

by changes in individual behavior.  In any case, all models 

have their limits, and socio-dynamic approaches only deal 

with aggregated phenomena rather than individual 

outcomes (Weidlich, 2002). 

The main points of our research are outlined below. In 

Section 2 we argue that the Zipf’s distributions of cities 

populations and areas can be derived from the basic 

assumption that the development process is Markovian, 

without other additional constraints. This result, well 

known for the largest cities in all over the world, is 

empirically tested using data referring to Romania as an 

example of developing country. Section 3 brings into 

discussion the shape of the urban perimeter by means of 

some numerical simulations of DLA and SOC models, 

versus the empirical founded structure of the largest urban 

settlement in Romania, namely the capital Bucharest. We 

find that the basic assumptions of CPT simply do not 

work. No hexagonal structure can be found in the central 

places disposition. Instead, the real structure is found to be 

well fitted by DLA and SOC simulations, and may be 

entirely explained by particular historical and economic 

facts of evolution. The last section summarizes the 

findings and draws some conclusions. 

    

2. THE POPULATION AND AREA DISTRIBUTIONS 

OF CITIES AND TOWNS 

 

2.1 The stochastic model 

 Let us consider N towns, and let be si the size of the i-th 

city (expressed as number of citizens as well as units of 

urban area). The model is built using the general 

framework of the master equation. We assign the transition 

rates for the growth Ψ+(si) or decrease Ψ–(si) of the size si. 

In other words, Ψ+(si) is the probability that a new citizen 

arrives (or a new economic/residential unit-area location is 

created) in the city i in the time interval (t, t + dt), so that si 

 si + 1. Analogous, Ψ–(si) is the probability that one of 

the s citizens departs (or a unit-area location is left) in the 

same time interval, so that si  si  1.    

We introduce now the average number n(s, t) of cities of 

size s at time t, for a given N. The quantity n(s, t) satisfies 

the master equation: 
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   (5) 

 

where ∂n(s, t)/∂t is the variation of n. The parameters of 

the model are the transition rates Ψ±(si). 

If the total number of cities N is considered not be 

constant, at least an additional parameter must be 

introduced (e.g. Marsili & Zhang, 1998; Blank and 

Solomon, 2000), describing the probability that a citizen 

leaves the system (or a unit-area location is created outside 

of the system). However, a new city formation implies an 

allocation process, strongly depending on external 

conditions which cannot be simply included in this 

approach (but might be an interesting challenge for further 

works). Moreover, the time scale of this process certainly 

exceeds the time scale of the statistical data recording.  

Thus, as in the study of the most interacting-agent 
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systems, we are firstly interested in finding the stationary 

solution of the master equation, for which s and N are 

constant on average and:  

 

0
),(



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t

tsn
                                                               (6)  

 

In this case n(s, t)  n(s), i.e. the quantities n and Ψ do 

not depend explicitly on the time. Equation (5) becomes: 
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The simplest way to take into account the interactions 

among agents is assuming these interactions pair-wise 

type, so that: Ψ ~ s
2
. This assumption simply means that all 

the s city units are in interaction each other, displaying a 

fully connected social network. In the simplest way, 

choosing Ψ–(s) = k1·s
2
 and respectively Ψ+(s) = k2·s

2
, a 

straightforward calculus leads to:  
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where  


N

i isNC
1

2
. Using the rank relation (3) 

one finds: 
1~)( ssR , or, inverting: RRs /1~)( , that 

is the usual form of the Zipf’s law. 

 

2.2 The empirical dataset 

The empirical data referring to the urban area and 

population of the Romanian cities and towns were 

supplied by the most recent census performed by 

Romanian Institute of Statistics (2003). A number of 320 

large and medium size towns are ordered by decreasing the 

urban area, and by decreasing the urban population. 
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Fig. 1 The urban area distribution for 320 Romanian cities and towns. Inset: the Zipf plot. 
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Fig. 2 The urban population distribution for 320 Romanian cities and towns. Inset: the Zipf plot. 
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The data are well fitted by power laws, leading to the 

scaling exponents:  = 1,07 (for the urban area – Fig. 1) 

and   = 1,06 (for the urban population – Fig. 2). These 

results are in well agreement with the similar ones reported 

in the literature cited in Introduction. 

      One can see a good agreement of fitting as regards 

to the Pearson product moment correlation coefficient 

through the given data points (R
2
)1 = 0.92 for the area 

distribution, and (R
2
)2 = 0.94 for the population 

distribution. The standard errors are 1 = 1.07 and 2 = 

1.05 respectively. According with the Chebyshev's 

theorem, removing the points situated at more than ± 4  

from the fitted curve, i.e. the “outliers” (9 points in Fig. 1 

and 7 points in Fig. 2), one gets (R
2
)1 = 0.98 and (R

2
)2 = 

0.99 respectively. The 2
 statistic test applied to the 

remainder points gives more than 98% confidence interval 

in both cases. 

Taking into account the above results we can conclude 

that the both distributions are well fitted by the Zipf’s law. 

The fact that in any sampling a threshold minimal value is 

a priori chosen imposes a biased consideration of the 

values situated around the threshold and can explain the 

distribution cut-off. 

 

3. THE URBAN PERIMETER MODELING 

 

3.1 Numerical simulations of the growth process 

The simulations are performed model on a lattice, which 

we take for simplicity to be the two dimensional square 

lattice. The system evolves in discrete time. In the first 

version (Fig. 3), the simulation follows the slightly 

modified DLA model: we start from a central site 

containing a large number of particles. Now we introduce 

a new particle at a large distance from the seed, and let it 

perform a random walk. Ultimately, that second particle 

will either escape to infinity or contact the seed, to which 

it will stick irreversibly.  

 

 

 

 

Now introduce a third particle into the system and allow 

it to walk randomly until it either sticks to the two-particle  

cluster or escapes to  

infinity. In addition, at each time step, some particles are 

moved from the central place to the neighboring sites with 

a power-law decay probability.  

In the second version (Fig. 4), one starts from the sand 

pile model with a uniform distribution of heights (Bak et 

al. 1987). There is a positive integer variable at each site of 

the lattice, called the height of the sand pile at that site. At 

each time step a site is picked randomly, and its height zi is 

increased by unity. If the site height is larger than a critical 

value zc, the site relaxes by toppling whereby zc grains 

leave the site, and each of the four neighboring sites gets 

zc/4 grains. In case of toppling at a site at the boundary of 

the lattice, grains falling “outside” the lattice are not 

removed from the system, but they are added randomly to 

the highest ones. This process continues until all sites are 

stable.The spatial distribution of “avalanches”/”relaxation” 

processes are followed at two different times of simulation  

 

3.2 Comparison with the real data 

As shown, in the DLA model, only a large central place 

or large cluster is generated. The cluster generated by this 

process are both highly branched and fractal (Fig. 3). The 

cluster's fractal structure arises because the faster growing 

parts of the cluster shield the other parts, which therefore 

become less accessible to incoming particles. A new 

arriving random particle is far more likely to attach to one 

of the tips of the cluster shown in figure 1a than to 

penetrate deeply into one of the cluster’s "fjords" without 

first contacting any surface site.  

However, a real urban area is rather composed of central 

places that are spatially distributed following a certain 

hierarchy, thus the sand pile model of evolution (Fig. 4a 

and 4b) offer a more realistic description of the real urban 

perimeter shown in Fig. 5. 

 

 

 

Fig. 3 A numerical simulation of a growth process in a dendritic-like structure, from the DLA model (Eq. 2 with D = 1.7). 

The growth begins in the centre and extends to the periphery. 



 

 

 

Fig. 4a  

Fig. 4b 

Fig. 4 The result of the numerical simulation of a growth process in the sand pile model after (a) n = 10
2
; (b) n = 10

3
 

simulation time steps. 

 

Fig. 5 The structure of Bucharest in 1935. 

 The residential and economic unit coordinates are 

obtained by dividing the map in 250 × 250 screen squares. 

Data was supplied by Museum of Bucharest City 

(Bucharest) and Machedon and Scoffham (1999). 

One can also see in Fig. 5 that the basic assumptions of 

CPT simply do not work. No hexagonal structure can be 
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found in the central places disposition. Instead, we found 

one first order and two second order central places, in a 

quasi linear disposition. This structure can be exclusively 

explained by historical facts, taking into account that the 

city was formed by fusion of three independent old 

villages that must be seen as independent centers of 

growth.  

Each independent center has developed a dendritic-like 

structure around itself, as predicted by DLA model. 

Moreover, the density of commercial units decreases 

following a power law dependence on the distance from 

the local center. 

      On the other hand, the actual shape of the urban 

perimeter is well described by a SOC process, namely the 

spatial extending of the avalanches processes in the sand 

pile model. This result indicates that the first steps of any 

urban development are governed by “trial and error” 

principle rather than economic efficiency reasons. The 

randomness of the avalanches locations means here that 

the firms’ growth or failure result from the interaction of  

numerous social, political, economic factors, too many to 

be considered separately as explanatory facts, as well as 

from the agents idiosyncratic behavior.  

 

4. CONCLUSIONS 

In the present paper some basic ideas of the fractal city 

theory have been briefly reviewed. Particularly the 

questions of urban perimeter growth and towns’ 

distribution were pointed out. While an increasing amount 

of literature is devoted to the large cities structure and 

distribution, a relatively low interest has been so far given 

in the study of medium and small-size urban locations, 

especially those situated in the developing countries. 

Generally here are not mega-polis-like cities and the most 

urban centers are formed by merging some small units 

(villages).  

In this case, we found that:  

(i) The Zipf’s law can be directly derived from the 

assumption of the Markovian process of development 

without other auxiliary hypothesis.  

(ii) The power law distribution with exponent roughly 

unit was found to be valid for the urban settlements 

distribution in a developing country as well as it was found 

in the previous studies referring to the cities distribution of 

the developed countries; 

(iii) The basic assumptions of the Central Places Theory 

are not fulfilled in the case of cities formed by merging old 

village-like settlements. Particularly, the regular hexagonal 

structure predicted by CPT cannot be found. 

(iv) The Diffusion-Limited Aggregation model fits very 

the growth process around the local (second-order) poles. 

(v) The self-organized sand pile model seems to fit very 

well the urban perimeter shape. This fact can bring into 

discussion the relative importance of various economic, 

political and geographical particular factors, as well as the 

intrinsic competition between order and hazard.   
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